781 research outputs found

    Underground railroads: citizen entitlements and unauthorized mobility in the antebellum period and today

    Get PDF
    In recent years, some scholars and prominent political figures have advocated the deepening of North American integration on roughly the European Union model, including the creation of new political institutions and the free movement of workers across borders. The construction of such a North American Union, if it included even a very thin trans-state citizenship regime, could represent the most significant expansion of individual entitlements in the region since citizenship was extended to former slaves in the United States. With such a possibility as its starting point, this article explores some striking parallels between the mass, legally prohibited movement across boundaries by fugitive slaves in the pre-Civil War period, and that by current unauthorized migrants to the United States. Both were, or are, met on their journeys by historically parallel groups of would-be helpers and hinderers. Their unauthorized movements in both periods serve as important signals of incomplete entitlements or institutional protections. Most crucially, moral arguments for extending fuller entitlements to both groups are shown here to be less distinct than may be prima facie evident, reinforcing the case for expanding and deepening the regional membership regime

    Coherent, mechanical control of a single electronic spin

    Get PDF
    The ability to control and manipulate spins via electrical, magnetic and optical means has generated numerous applications in metrology and quantum information science in recent years. A promising alternative method for spin manipulation is the use of mechanical motion, where the oscillation of a mechanical resonator can be magnetically coupled to a spins magnetic dipole, which could enable scalable quantum information architectures9 and sensitive nanoscale magnetometry. To date, however, only population control of spins has been realized via classical motion of a mechanical resonator. Here, we demonstrate coherent mechanical control of an individual spin under ambient conditions using the driven motion of a mechanical resonator that is magnetically coupled to the electronic spin of a single nitrogen-vacancy (NV) color center in diamond. Coherent control of this hybrid mechanical/spin system is achieved by synchronizing pulsed spin-addressing protocols (involving optical and radiofrequency fields) to the motion of the driven oscillator, which allows coherent mechanical manipulation of both the population and phase of the spin via motion-induced Zeeman shifts of the NV spins energy. We demonstrate applications of this coherent mechanical spin-control technique to sensitive nanoscale scanning magnetometry.Comment: 6 pages, 4 figure

    Ultra-bright and efficient single photon generation based on N-V centres in nanodiamonds on a solid immersion lens

    Get PDF
    Single photons are fundamental elements for quantum information technologies such as quantum cryptography, quantum information storage and optical quantum computing. Colour centres in diamond have proven to be stable single photon sources and thus essential components for reliable and integrated quantum information technology. A key requirement for such applications is a large photon flux and a high efficiency. Paying tribute to various attempts to maximise the single photon flux we show that collection efficiencies of photons from colour centres can be increased with a rather simple experimental setup. To do so we spin-coated nanodiamonds containing single nitrogen-vacancy colour centres on the flat surface of a ZrO2 solid immersion lens. We found stable single photon count rates of up to 853 kcts/s at saturation under continuous wave excitation while having excess to more than 100 defect centres with count rates from 400 kcts/s to 500 kcts/s. For a blinking defect centre we found count rates up to 2.4 Mcts/s for time intervals of several ten seconds. It seems to be a general feature that very high rates are accompanied by a blinking behaviour. The overall collection efficiency of our setup of up to 4.2% is the highest yet reported for N-V defect centres in diamond. Under pulsed excitation of a stable emitter of 10 MHz, 2.2% of all pulses caused a click on the detector adding to 221 kcts/s thus opening the way towards diamond based on-demand single photon sources for quantum applications

    A Multipronged Comparative Study of the Ultraviolet Photochemistry of 2-, 3-, and 4-Chlorophenol in the Gas Phase

    Get PDF
    The S1(1ππ*) state of the (dominant) syn-conformer of 2-chlorophenol (2-ClPhOH) in the gas phase has a subpicosecond lifetime, whereas the corresponding S1 states of 3- and 4-ClPhOH have lifetimes that are, respectively, ∼2 and ∼3-orders of magnitude longer. A range of experimental techniques–electronic spectroscopy, ultrafast time-resolved photoion and photoelectron spectroscopies, H Rydberg atom photofragment translational spectroscopy, velocity map imaging, and time-resolved Fourier transform infrared emission spectroscopy–as well as electronic structure calculations (of key regions of the multidimensional ground (S0) state potential energy surface (PES) and selected cuts through the first few excited singlet PESs) have been used in the quest to explain these striking differences in excited state lifetime. The intramolecular O–H···Cl hydrogen bond specific to syn-2-ClPhOH is key. It encourages partial charge transfer and preferential stabilization of the diabatic 1πσ* potential (relative to that of the 1ππ* state) upon stretching the C–Cl bond, with the result that initial C–Cl bond extension on the adiabatic S1 PES offers an essentially barrierless internal conversion pathway via regions of conical intersection with the S0 PES. Intramolecular hydrogen bonding is thus seen to facilitate the type of heterolytic dissociation more typically encountered in solution studies
    • …
    corecore